

#### FACULTY OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATIONS

#### GEE336 Electronic Circuit/ II

Lecture #7 Active Filters

Instructor: Dr. Ahmad El-Banna )anna

© Ahmad



)anna

Ahmac

2015

Summer

Lec#7

Cts II,

Elec. (

### BASIC FILTER RESPONSES

# Intro.

- Filters are circuits that are capable of **passing** signals with certain selected **frequencies** while **rejecting** signals with **other** frequencies.
- This property is called **selectivity**.
- Active filters use transistors or op-amps combined with passive RC, RL, or RLC circuits.
- The **passband** of a filter is the range of frequencies that are allowed to pass through the filter with **minimum attenuation**.
- The critical frequency, (also called the cutoff frequency) defines the end of the passband and is normally specified at the point where the response drops (70.7%) from the passband response.
- Following the passband is a region called the **transition region** that leads into a region called the **stopband**.
- There is **no precise point** between the transition region and the stopband.

# **Basic Filter Responses**

Ideal Response



# **Basic Filter Responses**

- Actual filter responses depend on the **number of poles**, a term used with filters to describe the **number of RC circuits** contained in the filter.
- The -20 dB/decade **roll-off** rate for the gain of a basic RC filter means that at a frequency of  $10 f_c$ , the output will be -20dB (10%) of the input.
- This roll-off rate is **not a good filter characteristic** because too much of the unwanted frequencies (beyond the passband) are allowed through the filter.

# **Basic Filter Responses**

Low-Pass Filter Response

 $BW = f_c$ 



(a) Comparison of an ideal low-pass filter response (blue area) with actual response. Although not shown on log scale, response extends down to  $f_c = 0$ .



)anna

Ahmad

 $\bigcirc$ 

Summer 2015

Elec. Cts II, Lec#7

С

 $T(s) = \frac{V_{o}(s)}{V_{i}(s)} = \frac{1/s_{c}}{R + \frac{1}{s_{c}}} = \frac{1}{1 + s_{c}R}$ 

# Basic Filter Responses..

#### • High-Pass Filter Response



(a) Comparison of an ideal high-pass filter response (blue area) with actual response



)anna

Ahmad [

 $\bigcirc$ 

, Summer 2015

Elec. Cts II, Lec#7









anna

omac

2015

Summer

Lec#7

Cts II

Elec.

- The **quality factor** (Q) of a band-pass filter is the ratio of the center frequency to the bandwidth.
- The higher the value of Q, the narrower the bandwidth and the better the selectivity for a given value of f<sub>0</sub>.
- Band-pass filters are sometimes classified as narrow-band (Q>10) or wide-band (Q<10).</li>

$$Q = \frac{f_0}{BW}$$

# Basic Filter Responses....

• Band-Stop Filter Response

also known as notch, band-reject, or band-elimination filter.



#### FILTER RESPONSE CHARACTERISTICS

- Each type of filter response (lowpass, high-pass, band-pass, or bandstop) can be tailored by *circuit component values* to have either a
  - Butterworth,
  - Chebyshev, or
  - Bessel characteristic.
- Each of these characteristics is identified by the shape of the response curve, and each has an advantage in certain applications.



#### The Butterworth Characteristic

- The Butterworth characteristic provides a very flat amplitude response in the passband and a roll-off rate of -20 dB/decade/pole.
- The phase response is not linear, and the phase shift (thus, time delay) of signals
  passing through the filter varies nonlinearly with frequency.
- Therefore, a pulse applied to a Butterworth filter will cause overshoots on the output because each frequency component of the pulse's rising and falling edges experiences a different time delay.

#### FILTER RESPONSE CHARACTERISTICS..

#### The Chebyshev Characteristic

- Filters with the Chebyshev response characteristic are useful when a rapid roll-off is required because it provides a roll-off rate greater than -20 dB/decade/pole.
- This is a greater rate than that of the Butterworth, so filters can be implemented with the Chebyshev response with fewer poles and less complex circuitry for a given roll-off rate.
- This type of filter response is characterized by overshoot or ripples in the passband (depending on the number of poles) and an even less linear phase response than the Butterworth.

#### The Bessel Characteristic

- The Bessel response exhibits a **linear phase characteristic**, meaning that the phase shift increases linearly with frequency.
- The result is almost **no overshoot on the output** with a pulse input.
- It has the **slowest roll-off** rate.

## Critical Frequency and Roll-Off Rate



 $R_4$ 

 $R_2$ 

•

 $f_{c} = ?!$ 

Sanna Ahmad  $\bigcirc$ Summer 2015 Elec. Cts II, Lec#7

 $\geq R_6$ 

#### ACTIVE LOW-PASS FILTERS

Ahmad  $\bigcirc$ Summer 2015 Lec#7 <u>Elec. Cts II,</u>

15

Banna

.6

## Advantages of Op-Amp Active Filters

- Filters that use op-amps as the active element provide several advantages over passive filters (R, L, and C elements only).
  - The op-amp provides **gain**, so the **signal is not attenuated** as it passes through the filter.
  - The high input impedance of the op-amp **prevents excessive loading of the driving source**.
  - The low output impedance of the op-amp prevents the filter from being affected by the load that it is driving.
  - Active filters are also **easy to adjust over a wide frequency range** without altering the desired response.

# Single-Pole LPF





$$A_{cl(\mathrm{NI})} = \frac{R_1}{R_2} + 1 \qquad \qquad f_c = \frac{1}{2\pi RC}$$

.7

# 2-Pole LPF The Sallen-Key LPF (2<sup>nd</sup> Order)

- It is used to provide very high Q factor and passband gain without the use of inductors.
- It is also known as a **VCVS** (voltagecontrolled voltage source) filter.



$$f_c = \frac{1}{2\pi\sqrt{R_A R_B C_A C_B}}$$

$$f_c = \frac{1}{2\pi RC}$$
 @  $R_A = R_B = R$  and  $C_A = C_B = C$ .

<u>Assignment:</u> Derive the  $f_c$  equation.

# Cascaded LPF



 A three-pole filter is required to get a third-order low-pass response.

•

(a) Third-order configuration



 $C_{A1}$ 



 $C_{B2}$ 

2 poles

(b) Fourth-order configuration

)anna Ahmad  $\bigcirc$ Summer 2015 Elec. Cts II, Lec#7

Elec. Cts II, Lec#7 , Summer 2015

20

)anna

Ahmad

 $\bigcirc$ 

In high-pass filters, the roles of the capacitor and resistor are reversed in the RC circuits.

## **ACTIVE HIGH-PASS FILTERS**





)anna

Ahmad

 $\bigcirc$ 

Elec. Cts II, Lec#7, Summer 2015

21

Sallen-Key HPF

Two-pole high-pass circuit



# **Cascaded HPF**



Order = ? roll-off = ?

Ahmad [  $\bigcirc$ Elec. Cts II, Lec#7, Summer 2015

Banna

#### **ACTIVE BAND-PASS FILTERS**

23

Sanna

#### Cascaded Low-Pass and High-Pass Filters



### ACTIVE FILTERS BASED ON TWO-INTEGRATORS LOOP

# **Biquad Filter**

(Two-Integrators Loop biquadratic circuit)

- "Biquad" is an abbreviation of "**biquadratic**", which refers to the fact that its **transfer function** is the ratio of two quadratic functions.
- To derive the biquad circuit, consider the 2<sup>nd</sup> order high pass transfer function

$$\frac{V_{\rm hp}}{V_i} = \frac{Ks^2}{s^2 + s(\omega_0/Q) + \omega_0^2}$$

Cross multiply and reform,

$$V_{\rm hp} + \frac{1}{Q} \left( \frac{\omega_0}{s} V_{\rm hp} \right) + \left( \frac{\omega_0^2}{s^2} V_{\rm hp} \right) = K V_i$$

$$V_{\rm hp} = KV_i - \frac{1}{Q}\frac{\omega_0}{s}V_{\rm hp} - \frac{\omega_0^2}{s^2}V_{\rm hp}$$

# Biquad Filter ..

• Derivation of a block diagram realization of the two-integrator loop biquad



# Biquad Filter ...



FIGURE 12.23 Derivation of a block diagram realization of the two-integrator-loop biquad.

$$V_{\rm hp} = KV_i - \frac{1}{Q}\frac{\omega_0}{s}V_{\rm hp} - \frac{\omega_0^2}{s^2}V_{\rm hp}$$

$$\frac{(-\omega_0/s)V_{\rm hp}}{V_i} = -\frac{K\omega_0 s}{s^2 + s(\omega_0/Q) + \omega_0^2} = T_{\rm bp}(s)$$

$$\frac{(\omega_0^2/s^2)V_{\rm hp}}{V_i} = \frac{K\omega_0^2}{s^2 + s(\omega_0/Q) + \omega_0^2} = T_{\rm ip}(s)$$

# Biquad Filter ....

(Universal Circuit)



$$V_{\rm hp} = \frac{R_3}{R_2 + R_3} \left( 1 + \frac{R_f}{R_1} \right) V_i + \frac{R_2}{R_2 + R_3} \left( 1 + \frac{R_f}{R_1} \right) \left( -\frac{\omega_0}{s} V_{\rm hp} \right) - \frac{R_f}{R_1} \left( \frac{\omega_0^2}{s^2} V_{\rm hp} \right)$$

$$R_f/R_1 = 1$$
  $R_3/R_2 = 2Q - 1$   $K = 2 - (1/Q)$ 

# Biquad Filter ....

• To obtain notch and all-pass function, the three outputs of the biquad are summed with appropriate weights



$$\frac{V_o}{V_i} = -K \frac{(R_F/R_H)s^2 - s(R_F/R_B)\omega_0 + (R_F/R_L)\omega_0^2}{s^2 + s(\omega_0/Q) + \omega_0^2}$$

Notch filter as example, use

$$R_B = \infty$$
  $\frac{R_H}{R_L} = \left(\frac{\omega_n}{\omega_0}\right)^2$ 

## ACTIVE FILTERS BASED UPON INDUCTOR REPLACEMENT

Sanna Ahmad  $\bigcirc$ Summer 2015 Lec#7 Cts II, Elec. (

# 2<sup>nd</sup> order LCR Resonator









$$T(s) = \frac{V_o}{V_i} = \frac{a_2 s^2}{s^2 + s(\omega_0 / Q) + \omega_0^2}$$

 $T(s) = \frac{V_o(s)}{V_i(s)} = \frac{Z_2(s)}{Z_1(s) + Z_2(s)}$ 

Elec. Cts II, Lec
$$\#7$$
 , Summer 2015  $\odot$  Ahmad  $\mathbb{F}$  ]- $\mathbb{P}$ anna

# 2<sup>nd</sup> order Active Filter based on inductor replacement

**The Antoniou Inductance-Simulation Circuit** 



# 2<sup>nd</sup> order Active Filter based on inductor replacement ..



FIGURE 12.20 (a) The Antoniou inductance-simulation circuit. (b) Analysis of the circuit assuming ideal op amps. The order of the analysis steps is indicated by the circled numbers.

# 2<sup>nd</sup> order Active Filter based on inductor replacement ...

 $V_r \circ$ 

The Op Amp-RC Resonator



anna

Jmac

S

Summer 201

Cts II

Elec.

$$\omega_0 = 1/\sqrt{LC_6} = 1/\sqrt{C_4 C_6 R_1 R_3 R_5 / R_2}$$

$$Q = \omega_0 C_6 R_6 = R_6 \sqrt{\frac{C_6}{C_4} \frac{R_2}{R_1 R_3 R_5}}$$
  

$$C_4 = C_6 = C \text{ and } R_1 = R_2 = R_3 = R_5 = R$$
  

$$\omega_0 = 1 / CR$$
  

$$Q = R_6 / R$$





## LPF with inductor replacement circuit





 $T(s) = \frac{KR_2/C_4C_6R_1R_3R_5}{s^2 + s\frac{1}{C_6R_6} + \frac{R_2}{C_4C_6R_1R_3R_5}}$ 

K = DC gain

$$\omega_0 = 1/\sqrt{LC_6} = 1/\sqrt{C_4 C_6 R_1 R_3 R_5 / R_2}$$

$$Q = \omega_0 C_6 R_6 = R_6 \sqrt{\frac{C_6}{C_4} \frac{R_2}{R_1 R_3 R_5}}$$

#### **ACTIVE BAND-STOP FILTERS**

37

Sanna

#### Multiple-Feedback Band-Stop Filter



#### State-Variable Band-Stop Filter



- For more details, refer to:
  - Chapter 15 at T. Floyd, **Electronic Devices**,9<sup>th</sup> edition.
  - Chapter 12 at Sedra & Smith, **Microelectronic Circuits**, 5<sup>th</sup> edition.
- The lecture is available online at:
  - <u>http://bu.edu.eg/staff/ahmad.elbanna-courses/12884</u>
- For inquires, send to:
  - <u>ahmad.elbanna@feng.bu.edu.eg</u>